已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于(  )A. 64B. 100C. 110D. 120

问题描述:

已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于(  )
A. 64
B. 100
C. 110
D. 120

设公差为d,
则由已知得

2a1+d=4
2a1+13d=28
a1=1
d=2
S10=10×1+
10×9
2
×2=100

故选B.
答案解析:利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求出a1和d,代入等差数列的前n项和公式求解即可.
考试点:等差数列的前n项和.
知识点:本题考查了等差数列的通项公式和前n项和公式,熟记公式是解题的关键,同时注意方程思想的应用.