已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],求m和n的值.
问题描述:
已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],求m和n的值.
答
(Ⅰ)由题意,函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.∴可设f(x)=a(x+1)2=ax2+2ax+a与函数f(x)=ax2+bx+1比较可得a=1∴f(x)的解析式为f(x)=(x+1)2;(Ⅱ...
答案解析:(Ⅰ)根据函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0,可设f(x)=a(x+1)2=ax2+2ax+a,与函数f(x)=ax2+bx+1比较,即可得出f(x)的解析式;
(Ⅱ)先确定g(x)=(x+1)2-1的值域,根据g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],确定m≥-1,从而可得g(x)=f(x)-1在区间[m,n]上单调增,由此可求m和n的值.
考试点:二次函数在闭区间上的最值;函数解析式的求解及常用方法;二次函数的性质.
知识点:本题重点考查函数的解析式,考查函数的单调性与值域,(2)问先确定函数的值域是关键.