等差数列{an}的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项式.
问题描述:
等差数列{an}的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项式.
答
设数列的公差为d
由s3=a22得,3a2=a22
∴a2=0或a2=3
由题意可得,S22=S1•S4
∴(2a2-d)2=(a2-d)(4a2+2d)
若a2=0,则可得d2=-2d2即d=0不符合题意
若a2=3,则可得(6-d)2=(3-d)(12+2d)
解可得d=0或d=2
∴an=3或an=2n-1