已知函数fx=3ax^4-2(3a+1)x^2+4x,①当a=1/6时,求fx的极值

问题描述:

已知函数fx=3ax^4-2(3a+1)x^2+4x,①当a=1/6时,求fx的极值

求导数:f'(x)=2x^3-6x+4=0,可知x=1,2,求2阶导数:f''(x)=6x-6,x=1,所以只有x=2是函数的极值点,带入原函数:f(2)=4是函数的极大值点