某物体由A点静止开始做匀加速直线运动,加速度大小为a1,经时间t后到达B点,随即使物体的加速度大小变为a2,方向与a1相反,再经时间t物体回到A点.求:

问题描述:

某物体由A点静止开始做匀加速直线运动,加速度大小为a1,经时间t后到达B点,随即使物体的加速度大小变为a2,方向与a1相反,再经时间t物体回到A点.求:
(1)物体在B点和回到A点时的速率之比.
(2)加速度a1和a2的大小之比.

物体从A点到达B点的速度为:Vb=a1t,物体从B点回到A点的速度为:Va=a1t-a2t
则有:Vb:Va=a1t:(a1t-a2t)=a1:(a1-a2)当物体速度由a1t变为0。t1=a1t/a2,物体速度由0返回到B点时:t2=t1=a1t/a2,再由B点返回到A点时有:Va^2-Vb^2=2a2a1t^2由:Vb:Va=a1:(a1-a2)则:[(a1-a2)Vb/a1]^2+Vb^2=2a2a1t^2,Vb=a1t[(a1-a2)t]^2+(a1t)^2=2a2a1t^2(a1-a2)^2+a1^2=2a2a1整理的:2a1^2-4a1a2+a2^2=0解得:a1=(4a2±a2√8)/4由题可得:a1=(4a2-a2√8)/4 为真解。得:a1:a2=(2-√2):2再由B点返回到A点时有:Va^2-Vb^2=2a2a1t^2由:Vb:Va=a1:(a1-a2)则:[(a1-a2)Vb/a1]^2+Vb^2=a2a1t^2,Vb=a1t[(a1-a2)t]^2+(a1t)^2=a2a1t^2(a1-a2)^2+a1^2=a2a1整理的:(a1-a2)^2+a1(a1-a2)=0则有:(a1-a2)(2a1-a2)=0a1=a2,a1=a2/2由题可得:a1=a2/2 为真解。得:a1:a2=1:2Va^2-Vb^2=2a2a1t^2应该为:Va^2-Vb^2=a2a1t^22、当物体速度由a1t变为0。t1=a1t/a2,物体速度由0返回到B点时:t2=t1=a1t/a2,再由B点返回到A点时有:Vb(t-2t1)+a2(t-2t1)^2/2=a1t^2/2,Vb=a1t,t1=a1t/a2则有:2a1t(t-2a1t/a2)+a2(t-2a1t/a2)^2=a1t^2整理:2a1(1-2a1/a2)+a2(1-2a1/a2)^2=a1 2a1(a2-2a1)+(a2-2a1)^2=a1a22a1a2-4a1^2+a2^2-4a1a2+4a1^2=a1a2 a2^2-2a1a2=a1a2 a2^2-3a1a2=0a2(a2-3a1)=0 则有:a2=3a1,故:a1:a2=1:3