已知f(x)为偶函数,g(x)为奇函数且满足f(x)+g(x)=1/(x+1),求f(x),g(x)的解析式.
已知f(x)为偶函数,g(x)为奇函数且满足f(x)+g(x)=1/(x+1),求f(x),g(x)的解析式.
f(-x) + g(-x) = 1/(-x+1)可以转换为 f(x) - g(x) = 1/(-x+1)
f(x) +g(x) =1/(x+1)
联立上面两个方程 得 f(x) =1/(1-x²) g(x) =x/(x²-1)
f(x-1)+g(x-1)=1/(x-1)+1,因为f(x)为偶函数g(x)为奇函,所以此式子可变为f(x+1)-g(x+1)=1/x,又因为f(x+1)+g(x+1)=1/x+2两式相加可得:2f(x+1)=1/x + 1/x+2,f(x+1)=x+1/(x+1)^2-1,让t=x+1所以f(x)=x/x^2-1同理两式相减可得:2g(x+1)=1/x+2 - 1/x,g(x+1)=—1/(x+1)^2-1所以g(x)=—1/x^2-1
-1/x平方-1 x/x平方-1
因为f(x)+g(x)=1/(x+1)(1)
所以f(-x)+g(-x)=1/(-x+1)(2)
又因为f(x)是偶函数,g(x)是奇函数
所以(2)变为f(x)-g(x)=1/(-x+1)(3)
(1)(3)式联立解得
f(x)=1/(1-x^2)
g(x)=-x/(1-x^2)
f(x)为偶函数,则:
f(-x)=f(x)
g(x)为奇函数,则:
g(-x)=-g(x)
因:
f(x)+g(x)=1/(x+1) 【以-x代入】 --------------------------(1)
得:
f(-x)+g(-x)=1/(1-x)
即:
f(x)-g(x)=1/(1-x) ---------------------------------------------------(2)
(1)+(2),得:
2f(x)=[1/(x+1)]+[1/(1-x)]
2f(x)=2/(1-x²)
得:
f(x)=1/(1-x²)
同理,(1)-(2),得:g(x)=-x/(1-x²)
f(x)+g(x)=1/(x+1) (1)
f(-x)+g(-x)=1/(-x+1) => f(x)-g(x)=1/(1-x) (2)
(1)-(2):
2g(x)=1/(x+1)-1/(1-x)=[1-x-1-x]/(1-x²)=-2x/(1-x²)
∴ g(x)=x/(x²-1)
(1)+(2):
2f(x)=1/(1+x)+1/(1-x)=2(1-x²)
∴ f(x)=1/(1-x²)