微分方程xy''-y'=x^2的通解

问题描述:

微分方程xy''-y'=x^2的通解

答:
xy''-y'=x^2
(xy''-y')/x^2=1
(y'/x)‘=1
y'/x=x+C1
y'=x^2+C1x
y=(1/3)x^3+C1x^2+C2