【【【【已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)】】】】
问题描述:
【【【【已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)】】】】
已知数列{an}中,a1=5/6,且对且对任意自然数n都有a
求数列{an}的通项公式
答
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n) = a(n-1)/3+(1/2)^n,a(n)/2 = a(n-1)/6+(1/2)^(n+1),令c(n)=a(n+1)-a(n)/2 = a(n)/3-a(n-1)/6 = [a(n)-a(n-1)/2]/3 = b(n-1)/3{c...