求证(tanαtan2α/tan2α-tanα)+√3[(sinα)^2-(cosα)^2]=2sin(2α-π/3)

问题描述:

求证(tanαtan2α/tan2α-tanα)+√3[(sinα)^2-(cosα)^2]=2sin(2α-π/3)

[tanαtan2α/(tan2α-tanα)]+√3[(sinα)^2-(cosα)^2]=sinasin2a/cosacos2a)/(sin2a/cos2a-sina/cosa)-√3cos2a=sinasin2a/cosacos2a)/[(sin2acosa-cos2asina)/cos2acosa]-√3cos2a=sinasin2a/sina-√3cos2a=2x(...