已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.

问题描述:

已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.

∵∠ACB=90°,
∴∠B+∠BAC=90°,
∵CD⊥AB,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠B,
∵AE是∠BAC的平分线,
∴∠CAE=∠EAB,
∵∠EAB+∠B=∠CFE,∠CAE+∠DCA=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∴△CEF是等腰三角形.