若sinx+siny=1,则cosx+cosy取值范围_.

问题描述:

若sinx+siny=1,则cosx+cosy取值范围______.

(sinx+siny)2+(cosx+cosy)2=sin2x+2sinxsiny+sin2y+cos2x+2cosxcosy+cos2y=2+2cos(x-y),
将sinx+siny=1代入得:1+(cosx+cosy)2=2+2cos(x-y),
即(cosx+cosy)2=1+2cos(x-y)≤1+2×1=3,
∵-1≤cos(x-y)≤1,
∴-1≤1+2cos(x-y)≤3,
∴0≤(cosx+cosy)2≤3,
解得:-

3
≤cosx+cosy≤
3

则cosx+cosy的范围为[-
3
3
].
故答案为:[-
3
3
]