若函数f(x)=asin(x-π/3)+b满足f(π/3)+f(π/2)=7且f(π)-f(0)=2√3求
问题描述:
若函数f(x)=asin(x-π/3)+b满足f(π/3)+f(π/2)=7且f(π)-f(0)=2√3求
(1)f(x)的解析式(2)f(x)的单调区间(3)f(x)的最小值(4)使f(x)=1/2的x的集合
答
1.f(π/3) + f(π/2)=[asin(π/3 - π/3) + b] + [asin(π/2 - π/3) + b] =(asin0 + b) + [asin(π/6) + b]=b + (1/2)a + b =7f(π) - f(0) =[asin(π - π/3) + b] - [asin(0 - π/3) + b] =[asin(2π/3) + b] - ...