已知函数f(x)=f’(1)e^(x-1)- f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间.(2)若f(x)≥1/2x^2+ax+b,求(a

问题描述:

已知函数f(x)=f’(1)e^(x-1)- f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间.(2)若f(x)≥1/2x^2+ax+b,求(a
已知函数f(x)=f’(1)e^(x-1)- f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间.(2)若f(x)≥1/2x^2+ax+b,求(a+1)b的最大值.

f(0)=f'(1)/ef'(x)=f'(1)e^(x-1)-f(0)+xf'(1)=f'(1)-f(0)+1=f'(1)-f'(1)/e+1解得f'(1)=ef(0)=1f(x)=e^x-x+1/2 x^2令 f'(x)=e^x+x-1=0 解得 x=0f''(x)=e^x+1>0,f'(x)单调递增x>0 f'(x)>0 f(x)单调递增x