高数题 证明一题(交错级数)是条件收敛

问题描述:

高数题 证明一题(交错级数)是条件收敛
和符号就不打了n=2到无穷 【(-1)^n 】×【1/lnlnn】 的敛散性
请问下 lnlnn

一:1:逐项递减
2:n趋向无穷时,此项为0
根据微积分书本什么定理,所以:此交错级数收敛
二:每项都取绝对值时,即1/lnlnn的敛散性
由于lnlnn1/n,因为级数(求和符号)1/n发散,所以,级数(求和符号)1/lnlnn发散
综上所述:条件收敛!
lnx0)
求导得y'=1/x-1,x>1时,递减
x