在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为 _ .

问题描述:

在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为 ___ .

(1)如图,延长AC,作FD⊥BC交点为D,FE垂直AC延长线于点E,
∵CF∥AB,∴∠FCD=∠CBA=45°,
∴四边形CDFE是正方形,
即,CD=DF=FE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AF,
∴AB=

12+12
=
2

∴AF=
2

∴在直角△AEF中,(1+EC)2+EF2=AF2
(1+DF)2+DF2=(
2
)
2

解得,DF=
3
-1
2

(2)如图,延长BC,做FD⊥BC,交点为D,延长CA,做FE⊥CA于点E,
同理可证,四边形CDFE是正方形,
即,CD=DF=FE=EC,
同理可得,在直角△AEF中,(EC-1)2+EF2=AF2
(FD-1)2+FD2=(
2
)
2

解得,FD=
3
+1
2

故答案为:
3
±1
2