(1)已知:x+y=5,x²+y²=13,求代数式x³y+2x²y²+xy³的值

问题描述:

(1)已知:x+y=5,x²+y²=13,求代数式x³y+2x²y²+xy³的值
(2)已知a+b=13,ab=40,求a²b+ab²的值
(3)利用因式分解计算:202²-54²+256×352
(4)已知|x+2y-1|+(2x-y-2)² =0
求(2x-y)² -2(2x-y)+(x+2y)² 的值

(1)x³y+2x²y²+xy³=xy(x^2+2xy+y^2)=xy*(x+y)^2
而(x+y)^2=25,x²+y²=13,xy=6
所以xy*(x+y)^2=150
(2)a²b+ab²=ab(a+b)=40*13=520
(3)202²-54²+256×352
=(202+54)*(202-54)+256×352
=256*148+256×352
=256*500
=128000
(4)|x+2y-1|+(2x-y-2)² =0
则x+2y=1
2x-y=2
(2x-y)² -2(2x-y)+(x+2y)²
=2^2-2*2+1^2
=1