在三角形中,三边长为连续自然数,且最大角是钝角,那么这个三角形的三边长分别为_.
问题描述:
在三角形中,三边长为连续自然数,且最大角是钝角,那么这个三角形的三边长分别为______.
答
设△ABC的三边c,b及a分别为n-1,n,n+1(n≥2,n∈Z),
∵△ABC是钝角三角形,∠A为钝角,则有cosA<0,
由余弦定理得:(n+1)2=(n-1)2+n2-2n(n-1)•cosA>(n-1)2+n2,
即(n-1)2+n2<(n+1)2 ,化简可得n2-4n<0,故0<n<4,
∵n≥2,n∈Z,∴n=2,n=3.
当n=2时,不能构成三角形,舍去. 当n=3时,△ABC三边长分别为2,3,4.
故答案为:2,3,4.