△ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(-1,1),向量n=[cosBcosC,sinBsinC(-根号3/2)],且m⊥n

问题描述:

△ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(-1,1),向量n=[cosBcosC,sinBsinC(-根号3/2)],且m⊥n
求A的大小
给出下列三个条件①a=1;②2c-(根号3+1)b=0;③B=45°,试从中再选择两个条件以确定△ABC,求出所确定的△ABC的面积.

∵向量m⊥向量n, ∴(-1)*cosBcosC+1*sinBsinC-1*√3/2=0.
cosBcosC-sinBsinC=-√3/2.
cos(B+C)=-√3/2.
-cosA=-√3/2.
cosA=√3/2.
(1) ∴∠A=π/6 (=30°).
(2)由a=1和∠B=45° 构成△ABC.
由正弦定理,得:b/sinB=a/sinA, b=asinB/sinA.
b=1*sin45°/sin30°=√2.
∠C=180°-30°-45°=105°.
sinC=sin105°=si(60°+45°)=(√2/4)(√3+1).[a=1,b=√2, c=(√2/2)(√3+1),三边符合三角形要求]
三角形ABC的面积的S=(1/2)absinC.
S=(1/2)*1*√2*[(√2/4)*√3+1)].
∴S=(1/4)(√3+1),(面积单位).