已知二次函数f(x)对任意函数x属于R,都有f(1-x)=f(1+x)成立,设向量a=(sinx,2)向量b=(2sinx,1/2)

问题描述:

已知二次函数f(x)对任意函数x属于R,都有f(1-x)=f(1+x)成立,设向量a=(sinx,2)向量b=(2sinx,1/2)
向量c=(cos2x,1)向量d=(1,2),当x属于[0,π]时,求不等式f(向量a乘以向量b)>f(向量c乘以向量d)的解集.

若二次函数的二次项系数为正,
∵二次函数f(x)对任意函数x属于R,都有f(1-x)=f(1+x)成立,
∴f(x)的图象关于直线x=1对称,
函数f(x)在区间[1,+∞)上为增函数.
又a•b=2sin²x+1≥1,
c•d=cos2x+2≥1,
∴不等式f(a•b)>f(c•d)可化为
2sin²x+1> cos2x+2,
即2-cos2x>cos2x+2,
cos2x