“所有的矩阵都可以合同对角化” 怎么证明?

问题描述:

“所有的矩阵都可以合同对角化” 怎么证明?
即任意矩阵A都可以写成A=P'XP的形式 其中X为对角阵 P'表示P的转置

首先,A一定要是对称矩阵,否则没希望.
对于对称矩阵,只要用Gauss消去法就可以了,如果过程中对角元出现0但该列非零,那么作用一个旋转变换就可以了.