y=sin(π/3 - 2x)xcos2x 的最小正周期是?

问题描述:

y=sin(π/3 - 2x)xcos2x 的最小正周期是?

y=(√3/2cos2x-1/2sin2x)*cos2x
=√3/2cos²2x-1/2sin2xcos2x
=√3/2*[(cos4x+1)/2]-1/4sin4x
=√3/4cos4x-1/4sin4x+√3/4
=cos(4x+Φ)+√3/4
cosΦ=√3/4
所以T=2π/4=π/2