f(x)=5sinxcosx-5倍根号3cosx的平方+5/2倍根号3,求(1)最小正周期(2)单调区间(3)图像对称轴和对称中心我已经化简了=5sin(2x-π/3) 尤其是不确定减区间的范围
f(x)=5sinxcosx-5倍根号3cosx的平方+5/2倍根号3,
求(1)最小正周期(2)单调区间(3)图像对称轴和对称中心
我已经化简了=5sin(2x-π/3)
尤其是不确定减区间的范围
f(x)=5sinxcosx-(5√3)cos²x+(5/2)√3,
求(1)最小正周期(2)单调区间(3)图像对称轴和对称中心
f(x)=5sinxcosx-(5√3)cos²x+(5/2)√3=(5/2)sin2x-(5√3)(1+cos2x)/2+(5√3)/2
=5[(1/2)sin2x-(√3/2)cos2x=5[sin2xcos(π/3)-cos2xsin(π/3)]=5sin(2x-π/3)
故最小正周期T=2π/2=π;
单调增区间:由 -π/2+2kπ≦2x-π/3≦π/2+2kπ,-π/6+2kπ≦2x≦5π/6+2kπ得单调增区间为:
-π/12+kπ≦x≦5π/12+kπ.
单调减区间:由 π/2+2kπ≦2x-π/3≦3π/2+2kπ,5π/6+2kπ≦2x≦11π/6+2kπ得单调减区间为:
5π/12+kπ≦x≦11π/12+kπ.
图像中心:由2x-π/3=2kπ,得图像中心为:x=kπ+π/6;
对称中心:由2x-π/3=π/2+2kπ,得对称中心为:x=5π/12+kπ;
以上都是k∈Z
1,
f(x)=5sinxcosx-5√3cos²x+5√3/2
=(5/2)sin2x-(5√3)(1+cos2x)/2+5√3/2
=5[(1/2)sin2x-(√3/2)cos2x]
=5[sin2xcos(π/3)-cos2xsin(π/3)]
=5sin(2x-π/3)
它的最小正周期T=2π/2=π;
2,
因为sinx的单调增区间为[-π/2,π/2],
由 2x-π/3∈[-π/2+2kπ,π/2+2kπ]
得 x∈[-π/12+kπ,5π/12+kπ]
得f(x)的单调增区间为 [-π/12+kπ,5π/12+kπ]
又因为sinx的单调减区间为[π/2,3π/2],
由 2x-π/3∈[π/2+2kπ,3π/2+2kπ]
得 x∈[5π/12+kπ,11π/12+kπ]
得f(x)的单调减区间为 [5π/12+kπ,11π/12+kπ] ;
3,
图像对称轴为 2x-π/3=π/2+kπ
即 x=5/12π+1/2kπ;
图像对称中心横坐标为 2x-π/3=kπ
得 x=π/6+1/2kπ
所以图像对称中心为
(π/6+1/2kπ,0).