证明:对任意矩阵A,有r(A^TA)=r(AA^T)=r(A)
问题描述:
证明:对任意矩阵A,有r(A^TA)=r(AA^T)=r(A)
答
证明方程AX=0与A^TAX=0同解
AX=0 显然有A^T*AX=0
A^T*AX=0则有X^T*A^T*AX=0 即(AX)^T*AX=0,
一个矩阵和它的转置相乘是0,则矩阵是0.则有AX=0
同解说明基相同,基相同说明*量数相等
n- r(A^T*A)=n-r(A)
则r(A^T*A)=r(A)