计算:(1/2+1/3+1/4+…+1/99+1/100)+(2/3+2/4+2/5+…+2/99+2/100)+…+(98/99+98/100).

问题描述:

计算:(

1
2
+
1
3
+
1
4
+…+
1
99
+
1
100
)+(
2
3
+
2
4
+
2
5
+…+
2
99
+
2
100
)+…+(
98
99
+
98
100
).

原式=

1
2
+(
1
3
+
2
3
)+(
1
4
+
2
4
+
3
4
)+(
1
5
+
2
5
+
3
5
+
4
5
)+(
1
6
+
2
6
+
3
6
+
4
6
+
5
6
)+(
1
7
+
2
7
+
3
7
+
4
7
+
5
7
+
6
7
)+…+(
1
100
+
2
100
+
3
100
+
4
100
+…+
98
100

=
1
2
+1+1.5+2+2.5+3+…+48.5
=(0.5+48.5)×97÷2
=2376.5.