求y=arcsin√(1-x^2)的微分,根据arcsinx'=1/√(1-x^2)
问题描述:
求y=arcsin√(1-x^2)的微分,根据arcsinx'=1/√(1-x^2)
根据arcsinx'=1/√(1-x^2),我算得是[-1/√(1-x^2)]dx
答案却是dy=[1/√(1-x^2)]dx,当-1
答
dy/dx
=1/√(1-(√(1-x^2)^2)) * (-x)/√(1-x^2)
=1/|x| * (-x)/√(1-x^2)
=-x/|x| * √(1-x^2)-1