如图,AB是圆O的直径,DF⊥AB于点D,交弦AC于点E,FE=FC.(1)求证:FC是圆O的切线

问题描述:

如图,AB是圆O的直径,DF⊥AB于点D,交弦AC于点E,FE=FC.(1)求证:FC是圆O的切线

(1)证明:连接OC.
∵FC=FE(已知),
∴∠FCE=∠FEC(等边对等角);
又∵∠AED=∠FEC(对顶角相等),
∴∠FCE=∠AED(等量代换);
∵OA=OC,
∴∠OAC=∠OCA(等边对等角);
∴∠FCE+∠OCA=∠AED+∠OAC;
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCE+∠OCA=90°,即FC⊥OC,
∴FC是⊙O的切线;