如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交点于C点,顶点为D
问题描述:
如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交点于C点,顶点为D
点E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于点F、G.
若点K在x轴的上方的抛物线上运动,当K运动到什么位置时,三角形EFK的面积最大,并求出最大面积?
答
(1)由题意,得 解得,b =-1.所以抛物线的解析式为,顶点D的坐标为(-1,).(2)设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH + CH最小,...