若三角形ABC的三边长X,Y,Z满足X^2+Y^2+Z^2+50=8x+6y+10z试判断三角形ABC的形状(要有步骤)
问题描述:
若三角形ABC的三边长X,Y,Z满足X^2+Y^2+Z^2+50=8x+6y+10z试判断三角形ABC的形状(要有步骤)
答
x+y+z+50=8x+6y+10z x+y+z+50-8x-6y-10z=0 (x-8x+16)+(y-6y+9)+(z-10z+25)=0 (x-4)+(y-3)+(z-5)=0 因为(x-4)≥0,(y-3)≥0,(z-5)≥0 要使它们的和等于0,则每一项都要等于0 所以x-4=0,y-3=0,z-5=0 x=4,y=3,z=5 因为4+3=5 所以以x,y,z为三边的三角形是直角三角形