已知圆x^2+y^2+x-6y+c=0与直线x-2y+3=0交于P,Q两点,且OP=OQ(O为坐标原点),求圆的方程

问题描述:

已知圆x^2+y^2+x-6y+c=0与直线x-2y+3=0交于P,Q两点,且OP=OQ(O为坐标原点),求圆的方程

那个条件 OP=OQ 应该是 OP丄OQ
由 x-2y+3=0 得 x=2y-3 ,代入圆的方程得 (2y-3)^2+y^2+(2y-3)-6y+c=0 ,
化简得 5y^2-16y+6+c=0 ,
设P(x1,y1),Q(x2,y2),
则 y1+y2=16/5 ,y1*y2=(6+c)/5 ,
因此 x1*x2=(2y1-3)(2y2-3)=4y1*y2-6(y1+y2)+9=4(6+c)/5-51/5=(4c-27)/5 ,
因为 OP丄OQ ,所以 x1*x2+y1*y2=0 ,
即 (6+c)/5+(4c-27)/5=0 ,
解得 c=21/5 ,检验知,它满足 16^2-20(6+c)>=0 ,
因此,所求的圆的方程为 x^2+y^2+x-6y+21/5=0 .