如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为_.
问题描述:
如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为______.
答
法一:设EC=y,FC=x.
∵∠C=90°,PE⊥BC,PF⊥CA,
∴四边形EPFC是矩形,
∴EP=FC=x;
∵AC=1,BC=2,
∴BE=2-y,
∵∠C=90°,PE⊥BC,
∴PE∥AC,
∴∠BPE=∠A,
又∵∠B=∠B,
∴
=2−y 2
,即y=2(1-x);x 1
∵EF2=x2+y2
∴EF2=5(x-
)2+4 5
(0<x<1),4 5
∴当x=
时,EF最小值=4 5
=
4 5
.2
5
5
法二:连接PC,
∵PE⊥BC,PF⊥CA,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=2,
∴AB=
,
5
∴PC的最小值为:
=AC•BC AB
.2
5
5
∴线段EF长的最小值为
.2
5
5