设n阶矩阵A满足A^2=2A,则以下结论中未必成立的是 A A-E可逆,且(A-E)^(-1)=A-E B A=0 or A=2E
问题描述:
设n阶矩阵A满足A^2=2A,则以下结论中未必成立的是 A A-E可逆,且(A-E)^(-1)=A-E B A=0 or A=2E
答
A^2=2A
A(A-2E)=0
B 不一定成立.
这是刚学矩阵乘法时常犯的错误