定义在R上的函数f(x)=1/3ax3+bx2+cx+2同时满足以下条件:①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直.(Ⅰ)求函数y=

问题描述:

定义在R上的函数f(x)=

1
3
ax3+bx2+cx+2同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

(Ⅰ)求导函数,可得f′(x)=ax2+2bx+c…(1分)由题意知f′(1)=0f′(0)=-12b=0,即a+2b+c=0c=-1b=0解得a=1b=0c=-1.…(4分)所以函数y=f(x)的解析式为f(x)=13x3-x+2.…(5分)(Ⅱ)g(x)=(13x3-f(x)) &n...