lim┬(x→0)〖(∫_0^x〖e(t次方) sint(平方)dt 〗)/x(立方);〗
问题描述:
lim┬(x→0)〖(∫_0^x〖e(t次方) sint(平方)dt 〗)/x(立方);〗
答
lim(x→0) [∫(0到x) (e^t)sin(t^2) dt]/x^3
=lim(x→0) (e^x)sin(x^2)/(3x^2),洛必达法则
=(1/3)lim(x→0) sin(x^2)/(x^2)*lim(x→0) e^x
=(1/3)*1*1
=1/3