设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项

问题描述:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项
(1)写出数列{an}的前3项
(2)求数列{an}的通项公式(写出推理过程)

(2)2,6,10(2)由题意,2sn=[(an+2)/2]的平方,sn=an平方/8+an/2+1/2,则s(n-1)=a(n-1)平方+a(n-1)/2+1/2,两式相减得:sn-s(n-1)=an=(an平方-an-1平方)/8+(an-an-1)/2,化简得:(an+an-1)×...