若n∈N+,n≥2,求证:1/2−1/n+1<1/22+1/32+…+1/n2<1−1/n.
问题描述:
若n∈N+,n≥2,求证:
−1 2
<1 n+1
+1 22
+…+1 32
<1−1 n2
. 1 n
答
证明:∵122+132+…+1n2> 12×3+13×4+…+1n(n+1)=12 −13+13−14+…+1n−1n+1=12−1n+1;又122+132+…+1n2<11×2+12×3+13×4+…+1(n−1)n=1−12+12−13+14−…+1n−1−1n<1−1n;所以12−1n+1<122+1...