若a,b,c是非零实数,并满足(a+b-c)/c=(a-b+c)/b=(b+c-a)/a且k=(a+b)(b+c)(c+a)/abc求k

问题描述:

若a,b,c是非零实数,并满足(a+b-c)/c=(a-b+c)/b=(b+c-a)/a且k=(a+b)(b+c)(c+a)/abc求k

∵(a+b-c)/c=(a-b+c)/b=(-a+b+c)/a=l
lc=a+b-c
lb=a-b+c
al=-a+b+c
三式相加
l(a+b+c)=a+b+c
则l=1
∴1=(a+b-c)/c=(a+b)/c-1
∴(a+b)/c=2
同理(b+c)/a=2,(c+a)/b=2
∴(a+b)(b+c)(c+a)/abc=2*2*2=8