f(t)是连续的奇函数,证明∫(0,x)f(t)dt是偶函数, f(t)为连续的偶函数,证明∫(0,x)f(t)dt为奇函数?
问题描述:
f(t)是连续的奇函数,证明∫(0,x)f(t)dt是偶函数, f(t)为连续的偶函数,证明∫(0,x)f(t)dt为奇函数?
答
证明:设F(x)=∫(0,x)f(t)dtF(-x)=∫(0,-x)f(t)dt,对此积分,代换t=-y,代入得:F(-x)=∫(0,-x)f(t)dt=∫(0,x)[-f(-y)]dy=∫(0,x)[-f(-t)]dt如果f(t)是连续的奇函数,那么:f(-t)=-f(t) ,F(-x)=∫(0,x)[f(t)]dt=F(x),F(...