设z=arctan[(x+y)/(x-y)],则dz=?

问题描述:

设z=arctan[(x+y)/(x-y)],则dz=?

此题比较适合利用一阶微分形式不变性,以及微分本身的运算法则求令 x+y=u,x-y=v,t=(x+y)/(x-y)=u/v 则dz=d(arctant)=[1/(1+t^2)] dt=[1/(1+t^2)]d[u/v]=[1/(1+t^2)][1/v^2](vdu-udv)=[1/(1+u^2/v^2)][1/v^2](vdu-udv)...