设集合Pn={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆Pn;②若x∈A,则2x∉A;③若x∈∁PnA,则2x∉∁PnA.(1)求f(4);(2)求f(n)的解析式(用n表示).

问题描述:

设集合Pn={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:
①A⊆Pn;②若x∈A,则2x∉A;③若x∈PnA,则2x∉PnA.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈pn,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中...
答案解析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)
(2)任取偶数x∈pn,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求
考试点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.


知识点:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义