S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)= _ .
问题描述:
S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)= ___ .
答
S=1+2x+3x2+4x3+…+nxn-1.
xS=x+2x2+3x3+…+nxn.
两式作差得:(1-x)S=1+x+x2+…+xn-1-nxn,
∵x≠1且x≠0,
∴(1-x)S=
-nxn,1-xn
1-x
则S=
-1-xn
(1-x)2
.nxn
1-x
故答案为:
-1-xn
(1-x)2
.nxn
1-x