如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证: (1)AE⊥BE; (2)AE、BE分别平分∠BAD及∠ABC.
问题描述:
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:
(1)AE⊥BE;
(2)AE、BE分别平分∠BAD及∠ABC.
答
证明:(1)过E作EF∥BC,
∵E是CD的中点,
∴F为AB中点,
∴EF是梯形ABCD的中位线,
则EF=
(AD+BC)=1 2
AB,1 2
∴AE⊥BE(直角三角形斜边的中线等于斜边的一半);
(2)∵EF是梯形ABCD的中位线,
∴AD∥EF,
∴∠AEF=∠EAD,
∵AF=EF,
∴∠AEF=∠EAF,
∴∠EAD=∠EAF,
∴AE平分∠BAD,
同理可证得:BE平分∠ABC.