已知抛物线x^2=8y的焦点为f,ab是抛物线的两动点,且af向量=u(一个系数)向量fb(u大

问题描述:

已知抛物线x^2=8y的焦点为f,ab是抛物线的两动点,且af向量=u(一个系数)向量fb(u大
已知抛物线x^2=8y的焦点为f,ab是抛物线的两动点,且af向量=u(一个系数)向量fb(u大于0),过ab两点分别作抛物线的切线,设其焦点为m,证明线段fm被x轴平分

【注:该题需用参数法】【注:该题需用参数法】抛物线x2=8y.焦点F(0,2),可设点A(4a,2a2),B(4b,2b2),(a≠b),由条件“向量AF=λFB(λ>0)”可知,三点A,F,B共线,∴ab=-1.由导数可求得过A,B两点的切线方程分别为La:y=ax-...