设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx

问题描述:

设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx
∫^(0,1)代表的是(0,1)区间上的积分

用分部积分法. ∫^(0,1)x(1-x)f"(x)dx(u= x(1-x)v'= f''(x) u' =1-2x v=f'(x) =[x(1-x) f'(x) ] (0,1) - ∫^(0,1)(1-2x)f'(x)dx再设u1=1-2xv1 = f'(x) (u1)' =-2(v1)'= f(x...