在三角形abc中 a b c 分别为内角ABC的对边,且a2+c2-b2=ac
问题描述:
在三角形abc中 a b c 分别为内角ABC的对边,且a2+c2-b2=ac
1.求角B的大小
(2)设函数f(x)=√3sin (x/2)cos (x/2)+1/2(cosx)求f(A)最大值,并判断三角形ABC此时形
答
a²+c²-b²=2accosB=ac
所以cosB=1/2
B=π/3
f(x)=√3sin (x/2)cos (x/2)+1/2(cosx)
=√3/2(sinx)+1/2(cosx)
=sinxcosπ/6+sinπ/6cosx
=sin(x+π/6)
x=π/3时,f(x)取最大值.A=π/3
此时△ABC是等边三角形