如图三角形ABC中,BD、CE分别平分角ABC、角ACB,AG先垂直BD,AF垂直CE,垂足分别为GF,AB=9 BC=12 AC=7 求FG

问题描述:

如图三角形ABC中,BD、CE分别平分角ABC、角ACB,AG先垂直BD,AF垂直CE,垂足分别为GF,AB=9 BC=12 AC=7 求FG

延长AG交BC于M,延长AF交BC于N,则由题设可知BG⊥AM,CF⊥AN,又∵BG平分∠ABC,CF平分∠ACB,∴△ABM和△ACN是等腰三角形,∴AC=CN=7,AB=BM=9∴MN=BM+CN-BC=9+7-12=4由△ABM和△ACN是等腰三角形,又可得F是AN中点、...