已知,在圆O中,弦AB垂直CD,OE垂直BC,求证OE等于二分之一AD

问题描述:

已知,在圆O中,弦AB垂直CD,OE垂直BC,求证OE等于二分之一AD

延长CO,交圆O于F,连接BF、DF
因为 CF是直径
所以 ∠CBF=90
所以 ∠ABC+∠ABF=90
因为 AB垂直CD
所以 ∠DCB+∠ABC=90
所以 ∠ABF=∠DCB
所以 BD弧=AF弧
所以 AD弧=BF弧
所以 AD=BF
因为 OE垂直BC
所以 E是BC中点
因为 O是CF中点
所以 OE是△CFB中位线
所以 OE=BF/2
所以 OE=AD/2