如图所示,质量分别为mA、mB的A、B两物块用轻线连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面的动摩擦因数均为μ,为了增加轻线上

问题描述:

如图所示,质量分别为mA、mB的A、B两物块用轻线连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面的动摩擦因数均为μ,为了增加轻线上的张力,可行的办法是(  )
A. 减小A物块的质量
B. 增大倾角θ
C. 增大B物块的质量
D. 增大动摩擦因数μ

根据牛顿第二定律得
对整体:F-(mA+mB)gsinθ-μ(mA+mB)gcosθ=(mA+mB)a
得a=

F
mA+mB
-gsinθ-μgcosθ
对B:T-mBgsinθ-μmBgcosθ=mBa
得到,轻线上的张力T=mBgsinθ+μmBgcosθ+mBa=mB
F
mA+mB

则要增加T,可减小A物的质量,或增大B物的质量.
故选:AC