若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是_.

问题描述:

若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.

当a=0时,方程是一元一次方程,有实数根,
当a≠0时,方程是一元二次方程,
若关于x的方程ax2+2(a+2)x+a=0有实数解,
则△=[2(a+2)]2-4a•a≥0,
解得:a≥-1.
故答案为:a≥-1.