g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m
g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m
我猜应该是 e^(-m/2)
g(x)=x^2-2m(lnx+x)
g(x)=x^2-2mlnx-2mx
g'(x)=2x-2m/x-2m
1、令:g'(x)>0,即:2x-2m/x-2m>0
①当x>0时,有:x^2-mx-m>0
(x-m/2)^2>(m^2+4m)/4
x>[m+√(m^2+4m)]/2,x<[m-√(m^2+4m)]/2
考虑到x>0,
所以,解得:x>[m+√(m^2+4m)]/2
②当x<0时,有:x^2-mx-m<0
(x-m/2)^2<(m^2+4m)/4
[m-(m^2+4m)]/2<x<[m+√(m^2+4m)]/2
考虑到x<0
所以,解得:[m-(m^2+4m)]/2<x<0
综合以上,有:g(x)的单调增区间是x∈([m-√(m^2+4m)]/2,0)∪([m+√(m^2+4m)]/2,∞)
2、令:g'(x)<0,即:2x-2m/x-2m<0
①当x>0时,有:x^2-mx-m<0
(x-m/2)^2<(m^2+4m)/4
[m-(m^2+4m)]/2<x<[m+√(m^2+4m)]/2
考虑到x>0,
所以,解得:0<x<[m+√(m^2+4m)]/2
②当x<0时,有:x^2-mx-m>0
(x-m/2)^2>(m^2+4m)/4
x>[m+√(m^2+4m)]/2,x<[m-√(m^2+4m)]/2
考虑到x<0,
所以,解得:x<[m-√(m^2+4m)]/2
综合以上,有:有:g(x)的单调减区间是x∈(-∞,[m-√(m^2+4m)]/2)∪(0,[m+√(m^2+4m)]/2)
因此,当x=[m-√(m^2+4m)]/2时,g(x)取得最小值
g(x)最小={[m-√(m^2+4m)]/2}^2-2mln{[m-√(m^2+4m)]/2}-2m[m-√(m^2+4m)]/2
{[m-√(m^2+4m)]/2}^2-2mln{[m-√(m^2+4m)]/2}-2m[m-√(m^2+4m)]/2=0
m^2-m√(m^2+4m)+(m^2+4m)/4-2mln{[m-√(m^2+4m)]/2}-m^2+m√(m^2+4m)=0
(m^2+4m)/4-2mln{[m-√(m^2+4m)]/2}=0
(m^2+4m)/4=mln{[m^2+m√(m^2+4m)]/2}
e^[(m^2+4m)/4]={[m^2+m√(m^2+4m)]/2}^m
懒得往下写了,就到这吧.
楼主只要解上面的方程,就能得到m了.