关于力偶的一个疑问,想不通.

问题描述:

关于力偶的一个疑问,想不通.
理论力学的书上描述:力偶对刚体有转动的效应,
而且力偶对刚体的作用与力偶的位置无关,
就是说力偶可以在刚体上任意的移动而不改变对刚体的作用.
这里有个疑问:在太空中,一个刚体上只受到惟一的一个力偶,这个刚体必然旋转,那么这个刚体到底是绕哪个轴旋转呢?为什么?
一个静止的刚体,受到一个力偶的作用,这个刚体将绕过质心的轴做角加速度运动.质心的速度等于0,

分析:
受力偶作用,质心有没有平动?----〉合力为零质心不动
受力偶作用,刚体是否转动?----〉因为力矩不为零,刚体转动,角加速运动
受力偶作用,转动方向?----〉力偶矩方向决定角加速度方向,初始角速度为零,则后续角速度方向为力偶矩方向.
受力偶作用,转轴在哪?---〉这个问题复杂点.如果要以惯性参考系描述,那结论就是,质心不动,当然转轴就在质心上.但这个结论没什么意义,下面解释一下这个问题,可能要上了大学才能理解.
首先你要明白下面一个道理:
任何你认为的绕某一转轴的转动都可以等效看作是刚体绕某一平移了一定距离的转轴在转动,叠加上这个转轴的平动(轨迹为圆型).如果原来你考察转动的转轴是惯性参考系,那现在这个平移了的转轴就是非惯性参考系.换句话总结来说:参考系不同,转轴也不同,但描述的都是同一个运动.
比如说A、B物体静止,B物体受一个力偶和一个力共同作用,显然B物体既转动又平动.问B物体的转动转轴在哪里?答案是哪都行,方向与力偶矩方向平行.认为转轴通过质心只是其中的一种比较普遍采用的分析方法,因为能简化所分析的问题.问A物体是否有转动?答案也是随便怎么看都可以.如果以惯性系看A,当然是没转动,如果以非惯性系来看(比如说你就站在B上跟B一起转来观察A),那么A是可以被认为也有转动的.充分体现了:参考系不同,运动的观察结果是完全不同的,更别说转轴了,但描述的都是同一个运动.